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l. INTRODUCTION

Let 4 = {x;}7_, be a partition of |a.b|, a=x,< -+ < x,=b. The length
of the interval |x,.x, ] is i;=x,,, —x; ({i=0...N 1), the mesh size of
the partition is ||4{ = max, 4, and the mesh ratio of the partition is y(d4) =
l4]l/min; k;. A partition A is uniform if its mesh ratio y(4) = 1. A family of
partitions is regular if there exists a strictly positive constant y such that
¥(4) > y for each partition 4 in the family.

A quadratic spline s is a function s € C'|a, b| such that s restricted to
|x;.x;,,| is a polynomial of degree <2. It is a periodic quadratic spline if
5'P(a) = s""(b) (the condition s{a) = s(b) is not used here).

Throughout this paper we will use the following notations. If g: [a. 5| > R
is a given function, we will write g,=g(x,). x,,,,= (x; +x;,,)/2 and
g n=28(x;.,,). For a positive integer N we will note Z, the set
{0. 1,..., N — 1} and Z¢ (resp. Z%) the set of even (resp. odd) numbers in Z,..

In this paper we define a periodic quadratic spline from its nodal values
s,(i = 0,..., V). In Section 2, we recall an existence and uniqueness result and
we give an explicit representation for the moments s!"" (i=0...N). In
Section 3, if s is the periodic quadratic spline interpolant of /'€ Cla, b|, we
obtain error bounds of the form || £ — s || ~O(4]*"' ) (0 I<k + 1.
0 < k£ < 2) which are valid only when the partition 4 is uniform.
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TABLE 1
Summary of the Convergence Results: i/ -5, ~ O A41™)
m=1 FECla.b|, /" E BV a, b Theorem 4
m=2 (i) f€AC) " {a.b|. £ € BV|a.b|. uniformd  Theorem S (k- 1)
(i) fEAC, a, b, regular 4 Theorem 7
m=13 SEAC, " |a.b]. " € BV|a.b|. uniform A Theorem 5 (k = 2)

Table [ gives a summary of our main results. In this table, and throughout
this paper, we use the following notations:

AC* Mla, b
(k+ 1) q
= Jre Clantl ) Sy £ ot v s
where 1 <g< o and k£ >0, and
BVla,b] =1/ la,b| - R| Var(f) < o,
where Var( /') is the total variation of fon |a, b|. Moreover.
SEACKH M a, b if f€AC" "a,b|and fM(a)=s"(b)

These results are extensions, to the periodic case, of those obtained by J.
W. Daniel |2| and C. de Boor [l]|. Finally, other quadratic spline inter-
polation approaches have been proposed before. for instance, see Kammerer
et al. |5]. M. J. Marsden |7], S. Demko |3]. E. Neuman |9| and Sharma and
Tzimbalario |10].

2. EXISTENCE OF PERIODIC QUADRATIC SPLINES

As previously defined. on each interval |x,.x;,,| a periodic quadratic
spline can be written

o, W) (st - st

S(x) =8, + (X -~ x;) 8 0 i ;

1

Consequently
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and this leads us to the following result (see also Meinardus and Taylor (8|
and Krinzesza |6]).

THEOREM 1. Let A= |x;Y , be a parition of l|a,b|. 4 periodic
quadratic spline is uniquely determined by its nodal values |s;}}_, iff and only
if N is odd. In this case

s:)l) l -1 1 « —1 1 (51 =84/ Ry

s 1 1 =1 ... 1 —1 (s:—s,)/h,
sOl=f-1 1 1 . —1 1 (53— 8,)/h, . (2)
sy -1 1 -0 .- Lo sy —sy )/ hy

I N is even, the spline does not exist or is not uniquely determined.

Proof.  If we use the assumption of periodicity s{"' = s{"’. the matrix form
of (1)is As'" = b, where

[ 0
I sg" (s, = so)/hy
A= . osh=1 and b=2 :
0 11 sV2, (Sy =Sy 1)/hvy
1 I
Then det 4 = 1 + (—1)"*" and the result follows. Q.E.D.

3. DERIVATION OF ERROR BOUNDS

Given a function f: [a,b| - R and a partition 4 = {x,}} ;. N odd, of the
interval |a, b|, we consider the periodic quadratic spline interpolant s of f
such that s(x;,)=f(x;). By definition, the remainder function or error is
e{x}=/(x}—s(x). In this section, we derive uniform bounds for the
remainder function. Thus we extend the results of J. W. Daniel |2| and C. de
Boor [1] to the periodic quadratic spline interpolation.

3.1. Preliminary Results
The study of the remainder function e rests on the behaviour of e!"
(i = 0..... N).

PROPOSITION 2. Let k=0, 1 or 2 and f€ AC*' """ |a, b|. If there exists
a constant C, and a real number a such that

max{lei|. eil, [} < Cihf 3)

i1
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Jor all i€ Z,, then there exist constants C,, which depend only on C, and
| SRV, such that for almost all x € |x;, x;, ]

e s Clhp R

Jor all 1 =0,..k+ 1 ¢cnd i€ Z, (when k=2 and [ =3 we rather have
e, =1/,

Proof. A direct adaptation of Stoer and Bulirsch’s | 11| Theorem 2.4.3.3
(see Dubeau and Savoie [4. Proposition 3.1]). Q.E.D.

We try now to obtain bounds of the form (3). A first step in this way is

PROPOSITION 3. Let k=0, | or 2 and f€ AC* " |a.b| ™ C'|a. bl
Then there exists a constant C,, independent of the partition. such that

el il [ < Gl (4)
Jorallie€ Z,. Moreover, Cy=4, C,=1;2 and C,=1/6.
Proof.  From (1) we always have
2 i 5
e de

!

(1) (n (1) (1)
ei e =0 -

and C,= 4. If k= 1. through integration by parts, we obtain

and C, = 1/2. If k = 2, through integration by parts agains, we obtain

() oy i
€; +6’1‘+1‘?(j‘

and C, = 1/6. Q.E.D.

(e Lo 2/ -
B A L e RN L E

In view of (4), it remains to find good bounds for the guantities

let — etV | (i € Z%). and we now consider this problem.

3.2. Uniform Convergence

THEOREM 4. Let f€C'la.b| and [V € BV|a.b|. (a) Then
etV —ell | <2 Var(f") for all i € Z.. (b) Then there exist constanis C,,
independent of the partition, such that

le L, < C Al L+ Var(/)] (6)
Jor =0 and 1.
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Proof. 1f f€ C'|a, b|, we deduce from (2)

Aol 7
AU DI =

Jo1 i

(7)

e
Similar expressions can be obtained for e}'’, —e!" for all i€ Z{. and for

simplicity we consider only i=0. But f,,,—/f;=h,f"(r;), where
7, € (x;.x;. ). Then (7) becomes

! A
el = el = [/ =2 N =S )

ez

and the first part is proved. The second part follows from the first and
Propositions 2 and 3. QED

The last theorem indicates that the remainder function is umiformly
bounded and || f'—s||,, = O as ||4]| - 0. The following example shows that we
cannot improve (6) without any supplementary hypothesis.

ExampLE.  Consider f(x)=sin nmx, x € |0, 1]. and 4 a uniform partition
of 10, 1]. The symmetry implies 55"’ =0 = s\"". But fV(0)=n = —/""(1). so
\e“‘\ =n=|el’| and (6) cannot be imporved (see Table II note the effect on
lell ,

The next example shows that the estimate (6) can fail if the hypothesis of
Theorem 4 is not satisfied, furthermore, we can improve it with stronger
hypothesis.

ExampLe. Consider f(x)= (1 +x)"' — (1 —x)"", x€ -1 +¢ | —¢]
When ¢ =0, the hypothesis of Theorem 4 is not satisfied and we do not

TABLE 11
Slx)y=sinax. x€ |0, 1}

N N :L [lely [t v
N

17 0.05882 0.4634E-1 31594

35 0.03030 0.2382E-1 31463

65 0.01538 0.1209£-1 2.1428
129 0.00775 0.6089£-2 31419
257 0.00389 0.3056E-2 31417
513 0.00195 0.1531E-2 3.1416
1025 0.00098 0.7662E-3 3.1417

(R lIl“+ Hr“
’

are cstimations of e and are computed according to le'"j* =
maxi: e'“ (e = +7 (h/10), j = 0....9. and i € Z,].
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observe (6) (see Table IlI, K=0. ¢=0). When ¢=0.1, we have
fECT]-0.9,09]. fM(-0.9)=,"70.9) and we observe a great
improvement of (6) (see Table III, K =0, ¢ = 0.1).

3.3. The Uniform Case

In this section we consider only uniform partitions. Hence Theorem 4 can
be extended in the following way.

THEOREM 5. Let k=1 or 2. f€ AC* """ |a.b|, f* " € BV|a, b|. and
A a uniform partition of |a. b|. (a) Then there exists a constant C, such that
‘e;l) e(l)lr ff(\“ f“)|+Ck \\A?\k\/ar(f‘"“)

Joralli€ Z; (C,=1/2 and C,=1/6). (b) Moreover, if f€ AC} "~ |a. b|.
then there exist constants C,,, independent of the partition. such that

[, < Cull LA+ Var(e )| (8)

Sorall [=0...k+ 1.
Proof. When k=1 or 2 and f€ AC*" """ |a.b|. we always have

-/}41‘ J I /+l .//(]))“I/l(‘:_ ‘\ff+1r’l)./"l'(é)dé~

o (7) becomes

o e = -2 N S O de o)

For a uniform partition 4, the changes of variables n =2(— x;. ..)/A,
(C€ |x; x| JEZ,) yield to

: 14y N A
el —el =" =S -—=—1 n [/"’ (-\‘,-Hw n-5"
2 7

Al
A (./+11+'] 5 \) dn.

The result follows for k= 1. When k& = 2, through integration by parts, (9)
becomes

’\'—‘l _1 fox o
e(]l) (1) lf(l) fz)l)l_ \ h) I [‘*”“(é }*17) ‘/(‘ (é)dé

(10)
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and, as before,

e}’ m If(n f})l)li

HASH _[l(lgnz) \° lf‘” ,H1+11Jf”_‘)

,er\ 2

I4
2 (sova e 50 | (n

and the proof of part (a) is completed. Part (b) is a direct consequence of (a)
and Propositions 2 and 3. Q.E.D.

The following examples show that the hypotheses of Theorem 5 are
essential.

ExampLe. Consider f(x)= (1 +x)"* %" — (1 —x)*'""" x&€|-1+e,
I —¢l,and K=1or 2. If ¢ >0, then f€ C; |1 + ¢, | —¢| and we observe
(12) in which k = 2 (see Table I1I). If ¢ = 0 then /& AC%" """ |—1, 1| and the
estimate (8) fails for A=K, but (8) is valid for A=K —1 since
SEACK™|—1.1] and /**" € BV|—1, 1] (see Table 1II).

ExampLE. We will construct a function f€ ACy""|0.1] such that
S*'D ¢ BY10, 1] and for which there exists a family of uniform partitions
leading to e!" —e{V ~ O(|A|IF ")

Consider k =2 (we essentially have the same situation when k==1). In
fact, we construct simultaneously f and an increasing family {4,!,  , of
uniform partitions. If {k,} |, is a strictly increasing sequence of positive
integers where k, = 0, we define the partition 4, = {i3 % |i=0,..., 3*|. For
each n = 1. 2..... let us define fV(x) for all x € (|4, ,,]. |4 H as follows:

ni

CY e g 3 .

SIx) =

It remains to choose k,(n > 2).
Assume k,,..., k, fixed, hence /" is defined on the interval (|4, |, I]. Tt is
easy to show that /¥ is of bounded variation over (|4, 1], we will note
this variation Var,(/*'). Now let us use (11) with the partition 4, ,. Then

14, 0 “'
8 .

(n

e' 1y _

— € (1 *’72)
1

J—-1 J-1
X [)_‘ 0" gm+ N (=1 g | dn, (12)
Jt i J
where
(3 HAnrHM k k 7 Ky .
e =r* (x, 1. +77AT*>.J:3 s K and J= 3k,



TABLE 1l

SO =0+ g e e
{ .
K ¢ N A= — e et e
0 0l 17 0.10588 0.8194£-3 0.7281£ 1
33 0.05455 0.1572E 3 0.2680£--]
65 0.02769 0.2333F-4 0.8053£-2
129 0.01395 0.3065£-5 0.2158E-2
257 0.00700 0.3844F -6 0.5523E-3
513 0.00351 0.4777£-7 0.1392£-3
1025 0.00176 0.5941E-8 0.3490F -4
0.0 17 0.11765 0.49455
a3 0.0606 1 0.46281
65 0.03077 0.43248
129 0.01550 0.40383
257 0.00778 0.37693
513 0.00390 0.35176
1025 0.00195 0.32823
! 0.1 17 0.6044E-4 0.5386F 2
33 0.9902£-5 0.1734£-2
65 0.1379£-3 0.4856£-3
129 0.1770E-6 0.1267E 3
257 0.2215£-7 0.3218£~4
513 0.2760E-8 0.8093£-5
1025 0.3444E-9 0.2029¢£ 5
0. 17 0.1211£-2 0.7217
33 0.5837£-3 0.6753
63 0.2769F-3 0.6311
129 0.1303F-3 0.5893
257 0.6104% -4 0.5500
513 0.2834F 4 0.5133
1025 0.1333£-4 0.4790
2 0.1 17 0.1787£—4 0.1648F 2 0.8928F~1
33 0.2583F-3 0.4687F-3 0.4951£-1
65 0.3414E-6 0.1241F 3 0.2615E 1
129 0.4343E-7 0.3178F-4 0.1344F- 1
257 0.5455F-8 0.8025E 3 0.6812£-2
S13 0.6826£ 9 0.20158-5 0.3430F-2
10253 0.8482F-10 0.5023£-6 0. 17TIRE 2
0. 17 0.8300£-4 0.799F 2 17336
33 0.2044E-4 0.3824F 2 1.6398
68 0.4898F -5 0.1806L -2 1.5307
129 0.1158E 3 0.8477F-3 14285
2:7 0.2719£-6 0.3966£ -3 1.3329
1023 0148787 0.8650F 4 L1604

84
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From the definitions of £ and Var,(f'"), (13) becomes

So if k, . ,is large enough, we deduce

e(]l) &931)2 HAHHHH(zun)-

Since we can do that for all n =1, 2...., we define /' € L*|0, 1]. It is easy
to show that f® & BV|0, 1], and if we integrate /¥ and add some
appropriate constants of integration, we obtain our desired function
SEAC)”0,1].

3.4. The Regular Case

When the partition is not uniform, we generally cannot establish (8)
without a stronger hypothesis. However, without any assumption on the
partition 4 we can deduce from Proposition 3 this local result.

THEOREM 6. Let k=1 or 2 and f€ AC;* ““la, b|. Then there exists at
least one index i that possibly depends on the partition A and the function f.
such that

max{lei"|. e}, [} < Cll/** VI Af.

. C, R
minile{”}. [eft [} <SS 1S4 i

where C, = 1/(k + 1). Moreover, there exist constants C,, independent of the
partition 4, such that for almost all x € |x;, x;, |

le(”(x)i < Ck[h:'“ b
forall 1=0,., k+ 1.

Proof. Consider Zy=ZiUZ,, where Z;=1{i€Zy]e!" >0} and
Zy=1i€Zy|e!V <0}. Since N is odd, there exist at least two successive
indices, with respect to Z,, in Z; or in Z, . Then we deduce the first two
inequalities from (4) and the periodicity of e!". These inequalities and
Proposition 2 complete the proof. Q.E.D.

There exists a large class of functions for which (8), with k = 1, remains
valid even for non-uniform partitions.

640°39:1 3
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THEOREM 7. Let f€ AC,|a. b|. (a) Then maxije;"\. e;' [} < (14/2)
LS Sorall € Z . (b) There exist <0nsiant5 C ;). that depend on the
mesh ratio y. such Ihal

\("“{:[ £ (,(”} ‘/.“)M ‘1 1;‘

forall =0, 1 or 1.

th [N

Proof.  Equations (5) and (10). respectivelv. to  lei' + e’
G200, and fel - el T 1Ay S for all e ZY. Hence (a)
tollows. To prove the seumd part consider

(’ p‘l’ i BRI
PN y) = [ Oy dr de
et 0 0 h,.i‘ w\/ ) dr dé.
Then fe'™'(x)i< (4 L)/ Sincc there exists § € (v, v, 1) such that

e"(&) = 0. we hdm e'(x) =17 e () drand je (XY < Ay + 1) [ S for
all xe [\ Ui |- Finally, since ¢, =0 (i=0...N), we obtain je(x) <
(74 D/2) ]S Q.E.D.

On the other hand. for the estimate (8) in which & = 2 the situation is
quite different. Indeed, for a given smooth function it is easy to construct a
regular family of partitions for which (8) fails.

ExaMpLE.  Consider f(x)=x"/310 x€& |- 1.1]. Thus f€C/| 1. 1]
JPx) =1 and (10) becomes

(1 o : : 2
€y, — € =-— A (h;, — hj)‘

S0
/E-./\

For an arbitrary but fixed §, 0 < f < 1. let us define the A,(i € Z,) as

=AY it ez,

g4l i e Z".
so  that  [[A[1 4 (N~ DI +p)/2] = 2. Then e ~el" =
(1AIP/6)UN — LT — S22, But (A (N —1)/252/(1 +f) as N - oo,
ensuring that el —e!{" = O(|4|). This, together with (4). shows that
el — el are only O(||4])). A numerical example appears in Table IV with

f=0.2.

The last result, deduced from the preceding example, shows that the class
of functions for which the estimate (8). with k& = 2. fails is rather large.

THEOREM 8. Let f€ Cila.b|. /' € BV|a, b| and [ is not a polynomial
of degree <2. Then there exists a constant C such that for all y > | we can
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TABLE IV
Slx)= x3 xS 0

\- ‘1 ii;t’”“;‘“,: g\l)i-‘_' ()l_‘r,

17 0.18868 0.1075F-2 0.2575£~1 1.075%

R 0.09901t 0.3106F -3 0.1336F -1 1,190

63 0.05076 0.8371£-4 0.6811FE-2 1.2640
129 0.02571 0.2175k -4 0.3439F 2 1.2982
257 0.01294 0.5542F-5 O.1728E 2 13157
S12 0.00649 0.1400E- 5 0.8659L-3 1.3245
1025 0.00325 0.351E-6 0.4335F 3 1.328Y

choose a non-uniform partition of arbitrarily small mesh size 14" and of
mesh ratio y for which

4l

.
e e (Lo J o, ai- f,

Proof. From the hypothesis. we can find a non-empty interval .c.d|c
la,b| such that for all x € |c,d|. /' (x) = ([/]|,/2). Let us take N odd
and {4l = (b—a)/|1 + (1 + UN — 1)/2], where 0 < f=1/y < 1. The knots
of the partition 4 are then chosen as follows:

Xy = Q. x, =41,
. ji I i . 70
X=X +’2\(1 +f) 4], Jjely.
X =X+ B4 if fv.x.,]cled]

L +m A

N4l ) el

"./

If we note Z%=1{j€Z%||x,.x;,,]<|c.d]} and use the change of
variables nn = 2(& — x; ., ,)/h; (E€ |x;.x;, (|, /€ Z,), then (10) becomes, for
the partition 4 defined below,

Al s h :
el — ol = I 8“ (1= n%) .\__ (jm (_r‘,.‘}’l%—?]hj, 1)
Tl jezy b /

A

) ( “l,+——h))d77
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L Uepia

L=n®) N (h+hy)
8 SN - X

je7Z\
h
fm <.H]2+ 5 h)dﬁ

(1-58)

2
‘ (1““’7:) \_ (fm (\—\'/.127"’27]}7/-1’

32 vl i€z 7V
—fY (xj, L +%h,) ) dn.
hence
1 — A 4 .
ey ey > LB oy \_ hot i - A2 v
p) o 6

If |4]| is small enough, we have >, zo(h; + h;, ) > (d — c)/2 and the result
follows with C = (d — ¢)/24. Q.E.D.

(o]

L.
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