Periodic Quadratic Spline Interpolation*

François Dubead ${ }^{+}$and Jean Savoie
Départment de Mathématiques. Collège Militaire Rol:al de Saint-Jean. St-Jean-sur Richelieu. Québec JOJ IRO, Canada
Communicated by Charles A. Micchelli
Received June 18. 1982

1. Introduction

Let $\Delta=\left\{x_{i}\right\}_{i=0}^{v}$ be a partition of $|a, b|, a=x_{0}<\cdots<x_{\mathrm{s}}=b$. The length of the interval $\left|x_{i}, x_{i+1}\right|$ is $h_{i}=x_{i+1}-x_{i}(i=0, \ldots, N \quad 1)$, the mesh size of the partition is $\|\Delta\|=\max _{i} h_{i}$ and the mesh ratio of the partition is $\gamma(\Delta)=$ $\|\Delta\| / \min _{i} h_{i}$. A partition Δ is uniform if its mesh ratio $\gamma(\Delta)=1$. A family of partitions is regular if there exists a strictly positive constant γ such that $\gamma(\Delta) \geqslant \gamma$ for each partition Δ in the family.

A quadratic spline s is a function $s \in C^{\prime}|a, b|$ such that s restricted to $\left|x_{i}, x_{i+1}\right|$ is a polynomial of degree $\leqslant 2$. It is a periodic quadratic spline if $s^{(1)}(a)=s^{(1)}(b)$ (the condition $s(a)=s(b)$ is not used here).

Throughout this paper we will use the following notations. If $g:|a, b| \rightarrow R$ is a given function, we will write $g_{i}=g\left(x_{i}\right), x_{i+1 / 2}=\left(x_{i}+x_{i+1}\right) / 2$ and $g_{i+1 / 2}=g\left(x_{i+1 / 2}\right)$. For a positive integer N we will note Z_{s} the set $\{0,1, \ldots, N-1\}$ and $Z_{N}^{e}\left(\right.$ resp. $\left.Z_{*}^{0}\right)$ the set of even (resp. odd) numbers in Z_{1}.

In this paper we define a periodic quadratic spline from its nodal values $s_{i}(i=0, \ldots, N)$. In Section 2, we recall an existence and uniqueness result and we give an explicit representation for the moments $s_{i}^{(1)}(i=0, \ldots . N)$. In Section 3, if s is the periodic quadratic spline interpolant of $f \in C|a, b|$, we obtain error bounds of the form $\left\|f^{(l)}-s^{(l)}\right\|_{x} \simeq O\left(\|\Delta\|^{k+1-l}\right)(0 \leqslant l \leqslant k+1$. $0 \leqslant k \leqslant 2$) which are valid only when the partition Δ is uniform.

[^0]TABLE 1
Summary of the Convergence Results: $f-s, \sim O\left(A{ }^{\prime \prime}\right)$

$m=1$	$f \in C\|a, b\|, f^{(1)} \in B V\|a, b\|$		Theorem 4
$m=2$	(i) $j \in A C_{p}^{2 \cdot x}\|a, b\|, f^{(2)} \in B V\|a, b\|$.	uniform 1	Theorem 5 ($k-1)$
	(ii) $f \in A C_{r}^{3.1}\|a, b\|$.	regular 4	Theorem 7
$m=3$	$f \in A C_{p}^{3,}\|a, b\|, f^{(3)} \in B V^{\prime}\|a . b\|$,	uniform 1	Theorem $5(k-2)$

Table I gives a summary of our main results. In this table, and throughout this paper, we use the following notations:

$$
\begin{aligned}
& A C^{k+1, q}|a, b| \\
& \quad=\left|f \in C^{k}\right| a, b| | \begin{array}{l}
(a) f^{(k+1)} \in L^{q}|a, b| \\
(b) f^{(k)}(s)=f^{(k)}(r)+i_{r} f^{(k-1)}(\xi) d \xi, \forall r,\left.s \in|a, b|\right|^{\prime}
\end{array}
\end{aligned}
$$

where $1 \leqslant q \leqslant \infty$ and $k \geqslant 0$, and

$$
B V \mid a, b]=\{f:|a, b| \rightarrow R \mid \operatorname{Var}(f)<\infty\},
$$

where $\operatorname{Var}(f)$ is the total variation of f on $|a, b|$. Moreover.

$$
f \in A C_{p}^{k+1, q}|a, b| \quad \text { if } f \in A C^{k, 1 . q}|a, b| \text { and } f^{(11}(a)=f^{(1)}(b) .
$$

These results are extensions, to the periodic case, of those obtained by J . W. Daniel $|2|$ and C. de Boor $|1|$. Finally, other quadratic spline inter. polation approaches have been proposed before, for instance, see Kammerer et al. $|5|$, M. J. Marsden $|7|$, S. Demko |3|. E. Neuman $|9|$ and Sharma and Tzimbalario |10|.

2. Existence of Periodic Quadratic Splines

As previously defined, on each interval $\left|x_{i}, x_{i, 1}\right|$ a periodic quadratic spline cen be written

$$
s(x)=s_{i}+\left(x-x_{i}\right) s_{i}^{(1)}+\frac{\left(x-x_{i}\right)^{2}}{2 h_{i}}\left(s_{i-1}^{(1)}-s_{i}^{(1)}\right) .
$$

Consequently

$$
\begin{equation*}
s_{i}^{(1)}+s_{i+1}^{(1)}=2 \frac{s_{i+1}-s_{i}}{h_{i}} \quad(i=0, \ldots, N-1), \tag{1}
\end{equation*}
$$

and this leads us to the following result (see also Meinardus and Taylor $|8|$ and Krinzesza $|6|$).

Theorem 1. Let $\Delta=\left\{x_{i}\right\}_{i=0}^{*}$ be a partition of $|a, b|$. A periodic quadratic spline is uniquely determined by its nodal values $\left\{s_{i}\right\}_{i=0}^{n}$ if and only, if N is odd. In this case

$$
\left[\begin{array}{c}
s_{0}^{(1)} \tag{2}\\
s_{1}^{(1)} \\
s_{2}^{(1)} \\
\vdots \\
s_{1}^{(1)}
\end{array}\right]=\left[\begin{array}{rrrlrr}
1 & -1 & 1 & \cdots & -1 & 1 \\
1 & 1 & -1 & \cdots & 1 & -1 \\
-1 & 1 & 1 & \cdots & -\cdots & 1 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
-1 & 1 & -1 & \cdots & 1 & 1
\end{array}\right]\left[\begin{array}{c}
\left(s_{1}-s_{0}\right) / h_{0} \\
\left(s_{2}-s_{1}\right) / h_{1} \\
\left(s_{3}-s_{2}\right) / h_{2} \\
\vdots \\
\left(s_{N}-s_{N-1}\right) / h_{N-1}
\end{array}\right]
$$

If N is even, the spline does not exist or is not uniquely determined.
Proof. If we use the assumption of periodicity $s_{0}^{(1)}=s_{v}^{(1)}$, the matrix form of (1) is $A s^{(1)}=b$, where

$$
A=\left[\begin{array}{cccc}
1 & 1 & & \\
& 1 & 1 & \\
& & \cdots & \\
& 0 & & 1 \\
1 & & & \\
\hline
\end{array}\right], \quad s^{(1)}=\left[\begin{array}{c}
s_{10}^{(1)} \\
\vdots \\
s_{x-1}^{(1)}
\end{array}\right] \quad \text { and } \quad b=2\left[\begin{array}{c}
\left(s_{1}-s_{0}\right) / h_{0} \\
\vdots \\
\left(s_{N}-s_{N-1}\right)^{\prime} h_{N-1}
\end{array}\right] .
$$

Then $\operatorname{det} A=1+(-1)^{\text {S+1 }}$ and the result follows.
Q.E.D.

3. Derivation of Error Bounds

Given a function $f:|a, b| \rightarrow R$ and a partition $A=\left\{x_{i}\right\}_{i}^{*}, N$ odd, of the interval $|a, b|$, we consider the periodic quadratic spline interpolant s of f such that $s\left(x_{i}\right)=f\left(x_{i}\right)$. By definition, the remainder function or error is $e(x)=f(x)-s(x)$. In this section, we derive uniform bounds for the remainder function. Thus we extend the results of J. W. Daniel $|2|$ and C. de Boor $|1|$ to the periodic quadratic spline interpolation.

3.1. Preliminary Results

The study of the remainder function e rests on the behaviour of $e_{i}^{(1)}$ $(i=0, \ldots . N)$.

Proposition 2. Let $k=0,1$ or 2 and $f \in A C^{k+1, r}|a, b|$. If there exists a constant C_{k} and a real number α such that

$$
\begin{equation*}
\max \left\{\left|e_{i}^{(1)}\right|,\left|e_{i-1}^{(1)}\right|\right\} \leqslant C_{k} h_{i}^{\alpha} \tag{3}
\end{equation*}
$$

for all $i \in Z_{N}$, then there exist constants $C_{k l}$ which depend only on C_{k} and $\left\|f^{(k+1)}\right\|_{\infty}$, such that for almost all $x \in\left|x_{i}, x_{i+1}\right|$

$$
\left|e^{(\prime)}(x)\right| \leqslant C_{k l}\left|h_{i}^{\alpha+1} \quad 1+h_{i}^{k+1} \quad\right|
$$

for all $l=0, \ldots . k+1$ and $i \in Z_{*}$ (when $k=2$ and $l=3$ we rather have $\left.\left\|e^{(3)}\right\|_{x}=\|\left. f^{(3)}\right|_{x}\right)$.

Proof. A direct adaptation of Stoer and Bulirsch’s |11| Theorem 2.4.3.3 (see Dubeau and Savoie (4, Proposition 3.11).
Q.E.D.

We try now to obtain bounds of the form (3). A first step in this way is
Proposition 3. Let $k=0,1$ or 2 and $f \in A C^{k+1 . ~}|a, b| \cap C^{1}|a, b|$. Then there exists a constant C_{k}, independent of the partition. such that

$$
\begin{equation*}
\left|e_{i}^{(1)}+e_{i+1}^{(1)}\right| \leqslant C_{k} h_{i}^{k}| | f^{(k-1)} \|_{1} \tag{4}
\end{equation*}
$$

for all $i \in Z_{4}$. Moreover, $C_{0}=4, C_{1}=1 / 2$ and $C_{2}=1 / 6$.
Proof. From (1) we always have

$$
e_{i}^{(1)}+e_{i+1}^{(1)}=f_{i}^{(1)}+f_{i=1}^{(1)}-\left.\frac{2}{h_{i}}\right|_{x_{i}} ^{x_{i}+1} f^{(1)}(\xi) d \xi
$$

and $C_{0}=4$. If $k=1$, through integration by parts, we obtain

$$
e_{i}^{(1)}+e_{i, 1}^{(1)}=\left.\frac{2}{h_{i} r_{x_{i}}}\right|_{i-1} ^{\left.\left(\xi-x_{i-1,2}\right) f^{(2)}(\xi) d \xi ;\right)}
$$

and $C_{1}=1 / 2$. If $k=2$, through integration by parts agains, we obtain

$$
\begin{equation*}
e_{i}^{(1)}+e_{i+1}^{(1)}=\frac{h_{i}}{4} \int_{x_{i}}^{x_{i}-1} f^{(3)}(\xi) d \xi-\left.\frac{1}{h_{i}}\right|_{x_{i}} ^{x_{i-1}}\left(\xi-x_{i, 1,2}\right)^{2} f^{(3)}(\xi) d \xi \tag{5}
\end{equation*}
$$

and $C_{2}=1 / 6$. Q.E.D.

In view of (4), it remains to find good bounds for the quantities $\left|e_{i}^{(1)}-e_{i+1}^{(1)}\right|\left(i \in Z_{v}^{e}\right)$, and we now consider this problem.

3.2. Uniform Convergence

Theorem 4. Let $f \in C^{1}|a, b|$ and $f^{(1)} \in B V|a, b|$. (a) Then $\left|e_{i}^{(1)}-e_{i+1}^{(1)}\right| \leqslant 2 \operatorname{Var}\left(f^{(1)}\right)$ for all $i \in Z_{N}^{e}$. (b) Then there exist constants C_{l}, independent of the partition, such that

$$
\begin{equation*}
\left\|e^{(0)}\right\|_{x x} \leqslant C_{l}\|\Delta\|^{1-1}\left|\left\|f^{(1)}\right\|_{x x}+\operatorname{Var}\left(f^{(1)}\right)\right| \tag{6}
\end{equation*}
$$

for $l=0$ and 1 .

Proof. If $f \in C^{1}|a, b|$, we deduce from (2)

$$
\begin{equation*}
e_{1}^{(1)}-e_{0}^{(1)}=\left|f_{1}^{(1)}-f_{0}^{(1)}\right|+2 \varliminf_{j}^{\wedge}(-1)^{j} \frac{f_{j+1}-f_{j}}{h_{j}} \tag{7}
\end{equation*}
$$

Similar expressions can be obtained for $e_{i+1}^{(1)}-e_{i}^{(1)}$ for all $i \in Z_{N}^{e}$, and for simplicity we consider only $i=0$. But $f_{j+1}-f_{j}=h_{j} f^{\prime \prime \prime}\left(\tau_{j}\right)$, where $\tau_{j} \in\left(x_{j}, x_{i, 1}\right)$. Then (7) becomes

$$
\left.e_{1}^{(1)}-e_{0}^{(1)}=\left|f_{1}^{(1)}-f_{0}^{(1)}\right|+2{\underset{j \in \mathbb{Z}_{3}^{(0}}{ }}^{\int^{(1)}}\left(\tau_{j+1}\right)-f^{(1)}\left(\tau_{j}\right)\right\}
$$

and the first part is proved. The second part follows from the first and Propositions 2 and 3.
Q.E.D.

The last theorem indicates that the remainder function is uniformly bounded and $\|f-s\|_{\infty} \rightarrow 0$ as $\|\Delta\| \rightarrow 0$. The following example shows that we cannot improve (6) without any supplementary hypothesis.

Example. Consider $f(x)=\sin \pi x, x \in|0,1|$, and Δ a uniform partition of $|0,1|$. The symmetry implies $s_{0}^{(1)}=0=s_{1}^{(1)}$. But $f^{(1)}(0)=\pi=-f^{(1)}(1)$, so $\left|e_{0}^{(1)}\right|=\pi=\left|e_{v}^{(1)}\right|$ and (6) cannot be imporved (see Table II note the effect on $\left.\|e\|_{c}\right)$.

The next example shows that the estimate (6) can fail if the hypothesis of Theorem 4 is not satisfied, furthermore, we can improve it with stronger hypothesis.

Example. Consider $f(x)=(1+x)^{0.1}-(1-x)^{0.1}, x \in|-1+\varepsilon, 1-\varepsilon|$. When $\varepsilon=0$, the hypothesis of Theorem 4 is not satisfied and we do not

TABLE II
$f(x)=\sin \pi x . x \in\{0.1 \mid$

N	$\\|\boldsymbol{A}\\|=\frac{1}{N}$	$\\|e\\|^{*(a)}$	$\\| e^{(1)_{i f}^{*(w i}}$
17	0.05882	$0.4634 E-1$	3.1594
35	0.03030	$0.2382 E-1$	3.1463
65	0.01538	$0.1209 E-1$	3.1428
129	0.00775	$0.6089 E-2$	3.1419
257	0.00389	$0.3056 E-2$	3.1417
513	0.00195	$0.1531 E-2$	3.1416
1025	0.00098	$0.7662 E-3$	3.1417

[^1]observe (6) (see Table III, $K=0, \varepsilon=0$). When $\varepsilon=0.1$, we have $f \in C^{\alpha}|-0.9,0.9|, \quad f^{(1)}(-0.9)=f^{(1)}(0.9)$ and we observe a great improvement of (6) (see Table III, $K=0, \varepsilon=0.1$).

3.3. The Uniform Case

In this section we consider only uniform partitions. Hence Theorem 4 can be extended in the following way.

Theorem 5. Let $k=1$ or $2, f \in A C^{k+1, x}|a, b|, f^{(k+1)} \in B V|a, b|$, and \triangle a uniform partition of $|a, b|$. (a) Then there exists a constant C_{k} such that

$$
\left|e_{i}^{(1)}-e_{i+1}^{(1)}\right| \leqslant\left|f_{x}^{(1)}-f_{0}^{(1)}\right|+C_{k} \mid \Delta \|^{k} \operatorname{Var}\left(f^{(k+1)}\right)
$$

for all $i \in Z_{N}^{e}\left(C_{1}=1 / 2\right.$ and $\left.C_{2}=1 / 6\right)$. (b) Moreover, if $f \in A C_{p}^{k} \cdot 1 .,|a, b|$. then there exist constants $C_{k l}$, independent of the partition. such that

$$
\begin{equation*}
\left\|e^{(f)}\right\|_{s} \leqslant C_{k l}\|\Delta\|^{k+1-1}\| \| f^{(k+1)} \|_{,}+\operatorname{Var}\left(f^{(k+1)}\right) \mid \tag{8}
\end{equation*}
$$

for all $l=0, \ldots . . k+1$.
Proof. When $k=1$ or 2 and $f \in A C^{k+1, *}|a . b|$. we always have

$$
f_{j+1}-f_{j}=\frac{h_{j}}{2}\left|f_{j+1}^{(1)}+f_{j}^{(1)}\right|-\left.\right|_{x_{j}} ^{x_{j-1}}\left(\xi-x_{i+1 / 2}\right) f^{(2)}(\xi) d \xi
$$

so (7) becomes

$$
\begin{equation*}
e_{1}^{(1)}-e_{0}^{(1)}=\left|f_{N}^{(1)}-f_{0}^{(1)}\right|-2 \sum_{j}^{N} \frac{(-1)^{j}}{h_{i}} \int_{x_{i}}^{x_{i, 1}}\left(\xi-x_{j+12}\right) f^{(2)}(\xi) d \xi \tag{9}
\end{equation*}
$$

For a uniform partition A, the changes of variables $\eta=2\left(\xi-x_{i}, 12\right) / h_{i}$ $\left(\xi \in\left|x_{j}, x_{j, 1}\right|, j \in Z_{v}\right)$ yield to

$$
\begin{aligned}
e_{1}^{(1)}-e_{0}^{(1)}= & \left|f_{\lambda}^{(1)}-f_{0}^{(1)}\right|-\left.\frac{\|\Delta\|}{2}\right|_{1} ^{1} \eta \underset{j \in Z_{y}^{0}}{ }\left[f^{(2)}\left(x_{j+3}+\eta \frac{\| \Delta}{2}\right)\right. \\
& \left.-f^{(2)}\left(x_{j+1 / 2}+\eta \frac{\|\Delta\|}{2}\right)\right] d \eta .
\end{aligned}
$$

The result follows for $k=\mathbf{1}$. When $k=2$, through integration by parts, (9) becomes
$e_{1}^{(1)}-e_{0}^{(1)}=\left|f_{N}^{(1)}-f_{0}^{(1)}\right|-\sum_{j=1}^{v} \frac{(-1)^{j}}{h_{j}} \int_{x,}^{x_{j, 1}}\left[\frac{h_{j}^{2}}{4}-\left(\xi-x_{j+1 / 2}\right)^{2}\right] f^{(3)}(\xi) d \xi$
and, as before,

$$
\begin{align*}
e_{1}^{(1)}-e_{0}^{(1)}= & \left|f_{i}^{(1)}-f_{0}^{(1)}\right|-\left.\frac{\|\Delta\|^{2}}{8}\right|_{-1} ^{1}\left(1-\eta^{2}\right){\underset{j \in Z_{l}^{0}}{ }}\left[f^{(3)}\left(x_{j+3 / 2}+\eta \frac{\|\boldsymbol{\Delta}\|}{2}\right)\right. \\
& \left.-f^{(3)}\left(x_{j+1 / 2}+\eta \frac{\|\Delta\|}{2}\right)\right] d \eta \tag{11}
\end{align*}
$$

and the proof of part (a) is completed. Part (b) is a direct consequence of (a) and Propositions 2 and 3.
Q.E.D.

The following examples show that the hypotheses of Theorem 5 are essential.

Example. Consider $f(x)=(1+x)^{K+0.1}-(1-x)^{K+0.1}, \quad x \in \mid-1+\varepsilon$, $1-\varepsilon \mid$, and $K=1$ or 2 . If $\varepsilon>0$, then $f \in C_{p}^{\infty}|-1+\varepsilon, 1-\varepsilon|$ and we observe (12) in which $k=2$ (see Table III). If $\varepsilon=0$ then $f \notin A C_{P}^{k+1, x}|-1,1|$ and the estimate (8) fails for $k=K$, but (8) is valid for $k=K-1$ since $f \in A C_{P}^{\kappa}|-1,1|$ and $f^{(K)} \in B V|-1,1|$ (see Table III).

Example. We will construct a function $f \in A C_{p}^{k+1, ~}|0,1|$ such that $f^{(k+1)} \notin B V|0,1|$ and for which there exists a family of uniform partitions leading to $e_{1}^{(1)}-e_{0}^{(1)} \simeq O\left(\|\Delta\|^{k-1}\right)$.

Consider $k=2$ (we essentially have the same situation when $k=1$). In fact, we construct simultaneously f and an increasing family $\left\{A_{n}\right\}_{n}^{\prime}$, of uniform partitions. If $\left\{k_{n}\right\}_{n-1}^{\infty}$ is a strictly increasing sequence of positive integers where $k_{1}=0$, we define the partition $\Delta_{n}=\left\{i 3^{-k_{n}} \mid i=0, \ldots, 3^{k_{n}}\right\}$. For each $n=1,2 \ldots$. let us define $f^{(3)}(x)$ for all $x \in\left(\left\|A_{n+1}\right\| \cdot\left\|\Delta_{n}\right\|\right)$ as follows:

$$
f^{(3)}(x)=\frac{(-1)^{j}:}{n} \text { if }\left\{\begin{array}{l}
x \in\left(j 3^{-k_{n+1}},(j+1) 3^{k_{n+} \cdot!} \mid .\right. \\
j=1, \ldots, 3^{k_{n}, 1 k_{n}}
\end{array}\right.
$$

It remains to choose $k_{n}(n \geqslant 2)$.
Assume k_{1}, \ldots, k_{n} fixed, hence $f^{(3)}$ is defined on the interval $\left(\left\|\Delta_{n}\right\|, 1 \mid\right.$. It is easy to show that $f^{(3)}$ is of bounded variation over $\left(\left\|A_{n}\right\|, 1 \|\right.$, we will note this variation $\operatorname{Var}_{n}\left(f^{(3)}\right)$. Now let us use (11) with the partition A_{n+1}. Then

$$
\begin{align*}
e_{1}^{(1)}-e_{0}^{(1)}= & \left.\frac{\left\|\Delta_{n+1}\right\|^{2}}{8}\right|_{1} ^{1}\left(1-\eta^{2}\right) \\
& \times\left[{\underset{j-1}{J-1}}_{\bigcup_{j}}^{\left.J-1)^{j+1} g_{j}(\eta)+\sum_{j}^{J}(-1)^{j+1} g_{j}(\eta)\right] d \eta}\right. \tag{12}
\end{align*}
$$

where

$$
g_{j}(\eta)=f^{(3)}\left(x_{j+1 / 2}+\eta \frac{\| \Delta_{n+1}}{2}\right), J=3^{k_{n+1}} \quad k_{n} \text { and } \bar{J}=3^{k_{n-1}} .
$$

TABLE 111

$$
f(x)=(1+x)^{n: 11,1}-(1 \quad x)^{n \cdot 9.1}, x \in|-1 \cdot \varepsilon| \quad \text { i }
$$

K	\&	N	$d \left\lvert\, i=\frac{1}{N}\right.$	$e^{(1)}$,	e^{11}	e^{21}
0	0.1	17	0.10588	0.8194E-3	$0.7281 E \cdot 1$	
		3.3	0.05455	$0.1572 E 3$	$0.2680 \mathrm{E} \cdot \mathrm{J}$	
		65	0.02769	0.2333E-4	$0.8053 \mathrm{~F} \cdots$	
		129	0.01395	$0.3065 E-5$	$0.2158 E-2$	
		257	0.00700	$0.3844 E-6$	$0.5523 E \cdots 3$	
		513	0.00351	$0.4777 E-7$	$0.1392 E-3$	
		1025	0.00176	$0.5941 E-8$	$0.3490 \mathrm{E} \cdot 4$	
	0.0	17	0.11765	0.49455		
		33	0.06061	0.46281		
		65	0.03077	0.43248		
		129	0.01550	0.40383		
		257	0.00778	0.37693		
		513	0.00390	0.35176		
		1025	0.00195	0.32823		
1	0.1	17		$0.6044 E-4$	$0.5386 \% 2$	
		33		$0.9902 E-5$	$0.1734 E 2$	
		65		$0.1379 E-5$	$0.4856 E \cdots 3$	
		129		0. $1770 E-6$	$0.1267 E 3$	
		257		$0.2215 E-7$	$0.3218 E-4$	
		513		$0.2760 E-8$	$0.8093 E-5$	
		1025		$0.3444 E-9$	$0.2029 E 5$	
	0.	17		$0.1211 E 2$	0.7217	
		33		$0.5837 E-3$	0.6753	
		65		$0.2769 \mathrm{~F}-3$	0.6 .311	
		129		$0.1303 E 3$	0.5843	
		257		0.6104E-4	0.5500	
		513		$0.2854 \mathrm{E}-4$	0.513 .3	
		1025		0.1333 EW 4	0.4790	
2	0.1	17		$0.1787 E-4$	$0.1648 t 2$	0.8428E-1
		33		0.2583E-5	$0.4687 E \cdots$	$0.4951 E-1$
		65		0.3414E-6	$0.1241 E 3$	$0.2615 E 1$
		129		$0.4343 E-7$	$0.3178 E-4$	$0.1344 E-1$
		257		$0.5455 E-8$	0.8025% -	$0.6812 E-2$
		513		$0.68266: 9$	$0.20152 \cdot=$	0.3430E-2
		1025		0.8482F-10	$0.5023 t \cdots$	$0.1718 E 2$
	0.	17		0.8300E-4	0.7991:2	1.7556
		33		0.2044E-4	$0.3824 E 2$	1.0 .398
		65		$0.4898 E$ S	$0.1806 E-2$	1.5307
		129		$0.1158 E 5$	0.8477 た3	1.4285
		2.7		$0.2719 E-6$	$0.3966 E \cdots$	1.3329
		1025		$0.1487 E-7$	0.8650 C 4	1.1604

From the definitions of $f^{(3)}$ and $\mathrm{Var}_{n}\left(f^{(3)}\right)$, (13) becomes

$$
e_{1}^{(1)}-e_{0}^{(1)} \geqslant \frac{\left\|A_{n+1}\right\|^{2}}{6}\left[\frac{1}{n}\left(\frac{\left\|\Delta_{n}\right\|}{\left\|\Delta_{n+1}\right\|}-1\right)-\operatorname{Var}_{n}\left(f^{(3)}\right)\right] .
$$

So if k_{n+1} is large enough, we deduce

$$
e_{1}^{(1)}-e_{0}^{(1)} \geqslant\left\|\Delta_{n+1}\right\|^{1+(2 / n)} .
$$

Since we can do that for all $n=1,2, \ldots$, we define $f^{(3)} \in L^{\infty}|0,1|$. It is easy to show that $f^{(3)} \notin B V\left[0,1 \mid\right.$, and if we integrate $f^{(3)}$ and add some appropriate constants of integration, we obtain our desired function $f \in A C_{p}^{3 . \infty}|0,1|$.

3.4. The Regular Case

When the partition is not uniform, we generally cannot establish (8) without a stronger hypothesis. However, without any assumption on the partition Δ we can deduce from Proposition 3 this local result.

Theorem 6. Let $k=1$ or 2 and $f \in A C_{p}^{k+1, \infty}|a, b|$. Then there exists at least one index ithat possibly depends on the partition Δ and the function f. such that

$$
\begin{aligned}
& \max _{\{ }\left\{e_{i}^{(1)}\left|,\left|e_{i+1}^{(1)}\right|\right\} \leqslant C_{k}\left\|f^{(k+1)}\right\|_{x} h_{i}^{k},\right. \\
& \min \left\{\left|e_{i}^{(1)}\right|,\left|e_{i+1}^{(1)}\right|\right\} \leqslant \frac{C_{k}}{2}\left\|f^{(k+1)}\right\|_{x} h_{i}^{k}
\end{aligned}
$$

where $C_{k}=1 /(k+1)$. Moreover, there exist constants $C_{k l}$ independent of the partition Δ, such that for almost all $x \in\left|x_{i}, x_{i+1}\right|$

$$
\left|e^{(l)}(x)\right| \leqslant C_{k l} h_{i}^{k+1 \quad 1}
$$

for all $l=0, \ldots, k+1$.
Proof. Consider $Z_{N}=Z_{N}^{+} \cup Z_{N}^{-}$, where $Z_{N}^{+}=\left\{i \in Z_{N} \mid e_{i}^{(1)} \geqslant 0\right\}$ and $Z_{\bar{v}}^{-}=\left\{i \in Z_{N} \mid e_{i}^{(1)}<0\right\}$. Since N is odd, there exist at least two successive indices, with respect to Z_{N}, in Z_{N}^{+}or in Z_{N}^{-}. Then we deduce the first two inequalities from (4) and the periodicity of $e^{(1)}$. These inequalities and Proposition 2 complete the proof.
Q.E.D.

There exists a large class of functions for which (8), with $k=1$, remains valid even for non-uniform partitions.

Theorem 7. Let $f \in A C_{p}^{3,1}|a, b|$. (a) Then $\max \left\{\left|e_{i}^{11}\right| \cdot e_{i}^{(1)} \mid\right\} \leqslant\left(\left|A_{1}\right| 2\right)$ $f^{(3)} \|_{1}$ for all $i \in Z_{1}$. (b) There exist constants $C_{1}(\%)$, that depend on the mesh ratio γ such that

$$
\left.\mid e^{(i)}, \leqslant C_{l}\left(O^{\prime}\right) f^{(3)}, A\right]^{*}
$$

for all $l=0,1$ or 2 .
Proof. Equations (5) and (10). respectively. to $e_{i}^{11}+e_{i}^{1,}, s$ $\left.\left(h_{i} / 2\right)\right|_{i} f^{(3)} \|_{1}$ and $\left|e_{i}^{(1)}-e_{i}^{(1)}\right| \leqslant(\|A\| 4) f^{(3)} \|_{1}$ for all $i \in Z_{3}^{e}$. Hence (a) follows. To prove the second part. consider

$$
e^{(2)}(x)=\frac{e_{i}^{(1)}}{h_{i}} \frac{e_{i, 1}^{(1)}}{h_{i}}-\left.\frac{1}{h_{i}}\right|_{i} ^{(i)} f^{(i)}(\tau) d \tau d \xi
$$

Then $\left|e^{(2)}(x) \leqslant(\ddot{x}+1)\right|^{i} f_{1}^{(1)} \mathbb{F}_{1}$. Since there exists $\zeta_{\zeta} \in\left(x_{i} \cdot x_{i}, 1\right)$ such that $e^{(1)}(\xi)=0$. we have $e^{(1)}(x)=\sum_{e}^{(2)}(r) d \tau$ and $\left|e^{(1)}(x)\right| \leqslant h_{i}(\gamma+1) \mid f^{(3)}$, for all $x \in\left|x_{i}, x_{i+1}\right|$. Finally, since $e_{i}=0 \quad(i=0, \ldots . N)$, we obtain $|e(x)| \leqslant$ $((\gamma+1) / 2) h_{i}^{2} \mid f^{(3)} \|_{11}$.
Q.E.D.

On the other hand, for the estimate (8) in which $k=2$ the situation is quite different. Indeed, for a given smooth function it is easy to construct a regular family of partitions for which (8) fails.

Example. Consider $f(x)=x^{3} / 3!, x \in|-1.1|$. Thus $f \in C_{n}^{\prime}|-1,1|$, $f^{(3)}(x)=1$ and (10) becomes

$$
e_{0}^{(1)}-e_{1}^{(1)}=\frac{1}{6} \searrow_{i \in Z_{1}^{0}}^{(}\left(h_{i+1}^{2}-h_{j}^{2}\right)
$$

For an arbitrary but fixed $\beta, 0<\beta<1$. let us define the $h_{i}\left(i \in Z_{\checkmark}\right)$ as

$$
\begin{aligned}
h_{i} & =\|A\| & & \text { if } \quad i \in Z_{i}^{i} . \\
& =\beta\|\Delta\| & & \text { if } \quad i \in Z_{i}^{0} .
\end{aligned}
$$

so that $\|\boldsymbol{A}\| 1+(N-1)(1+\beta) / 2 \mid=2$. Then $e_{0}^{(1)} \cdots e_{1}^{(1)}=$ $\left(\|A\|^{2} / 6\right)(N-1)\left(1-\beta^{2}\right) / 2$. But i $|d|(N-1) / 2 \rightarrow 2 /(1+\beta)$ as $N \rightarrow \infty$. ensuring that $e_{0}^{(1)}-e_{1}^{(1)}=O(\|\Delta\|)$. This. together with (4). shows that $e_{0}^{(1)}-e_{1}^{(1)}$ are only $O(\|\Delta\|)$. A numerical example appears in Table IV with $\beta=0.2$.

The last result, deduced from the preceding example, shows that the class of functions for which the estimate (8). with $k=2$, fails is rather large.

Theorem 8. Let $f \in C_{p}^{3}|a, b|, f^{(3)} \in B V|a, b|$ and f is not a polynomial of degree $\leqslant 2$. Then there exists a constant C such that for all $\gamma>1$ we can

TABLE IV

$$
f(x)=x^{3} / 3!x E|-1.1|
$$

\checkmark	d	$f e^{\text {mi }} \\|^{\prime}$.	$e^{(11)}$	$e^{(!), w}$
17	0.18868	$0.1075 \mathrm{E}^{-2}$	0.2575 $\mathrm{E}-1$	1.0755
$\therefore 3$	0.09901	0.3106E-3	$0.1336 E 1$	1.1480
0.	0.05076	$0.83715-4$	$0.6811 \mathrm{E-2}$	1.26 .40
129	0.02571	0.2175t:4	0.3439 E 2	1.2982
257	0.01294	0.5542E-5	$0.1728 E 2$	1.3157
513	0.00644	0.1400E-5	$0.8659 E^{-}-3$	1.3245
1025	0.00325	0.351E-6	$0.4335 E 3$	1.3284

choose a non-uniform partition of arbitrarily small mesh size $\|\Delta\|$ and of mesh ratio ; for which

$$
e_{0}^{(1)}-e_{1}^{(0)} \geqslant\left(1-\frac{1}{\gamma}\right) C\left\|f^{(3)},\right\| \Delta-\frac{\|\Delta\|^{2}}{6} \operatorname{Var}\left(f^{(3)}\right)
$$

Proof: From the hypothesis, we can find a non-empty interval $c, d \mid \subset$ $|a, b|$ such that for all $x \in|c, d|, f^{(3)}(x) \geqslant\left(\left\|\mid f^{(3)}\right\|_{a} / 2\right)$. Let us take N odd and $|\boldsymbol{A} \|=(b-a) /|1+(1+\beta)(N-1) / 2|$, where $0<\beta=1 / \gamma<1$. The knots of the partition Δ are then chosen as follows:

$$
\begin{aligned}
x_{0} & =a, \quad x_{1}=\|d\|, \\
x_{j} & =x_{1}+\frac{j-1}{2}(1+\beta)\|\Delta\|, \quad j \in Z_{v}^{\prime}, \\
x_{j+1} & =x_{j}+\beta\|\Delta\| \quad \text { if } \quad\left|x_{j}, x_{j+2}\right| \subset|c, d| . \\
& =x_{j}+\frac{(1+\beta)}{2}\|\Delta\| \quad \text { if } \quad\left|x_{j}, x_{j+2}\right| \notin|c, d| .
\end{aligned}
$$

If we note $\bar{Z}_{*}^{0}=\left\{j \in Z_{v}^{0}| | x_{j}, x_{j+2}|\subset| c, d \mid\right\}$ and use the change of variables $\eta=2\left(\xi-x_{j+1 / 2}\right) / h_{j}\left(\xi \in\left|x_{j}, x_{j+1}\right|, j \in Z_{N}\right)$, then (10) becomes, for the partition Δ defined below,

$$
\begin{aligned}
e_{1}^{(1)}-e_{1}^{(1)}= & \frac{\|\Delta\|^{2}}{8} \int_{-1}^{1}\left(1-\eta^{2}\right) \bigcup_{j \in \pi_{i}^{\prime}}\left(f^{(3)}\left(x_{j-3 / 2}+\frac{\eta}{2} h_{j+1}\right)\right. \\
& \left.-f^{(3)}\left(x_{j+1 / 2}+\frac{\eta}{2} h_{j}\right)\right) d \eta
\end{aligned}
$$

$$
\begin{aligned}
& \times f^{(3)}\left(x_{j+1 / 2}+\frac{\eta}{2} h_{j}\right) d \eta \\
& +\frac{(1-\beta)^{2}\|\Delta\|^{2}}{32} \int_{1}^{1}\left(1-\eta^{2}\right) \bar{V}_{i \in \lambda_{1}}^{\nabla_{i}}\left(f^{(3)}\left(x_{j, 3,2}+\frac{\eta}{2} h_{j, 1}\right)\right. \\
& \left.-f^{(3)}\left(x_{j, 1 / 2}+\frac{\eta}{2} h_{j}\right)\right) d \eta \text {. }
\end{aligned}
$$

hence

$$
e_{0}^{(1)}-e_{1}^{(1)} \geqslant \frac{(1-\beta)\|\Delta\|}{12}\left\|f^{(3)}\right\|_{x} \sum_{j \in \mathcal{T}_{i}^{(}}\left(h_{j}+h_{j+1}\right)-\frac{\left|\mathcal{A}^{2}\right|^{2}}{6} \operatorname{Var}\left(f^{(3)}\right)
$$

If $\|\Delta\|$ is small enough, we have $\sum_{j \in \bar{Z}_{i}^{\prime}}\left(h_{j}+h_{j+1}\right) \geqslant(d-c) / 2$ and the result follows with $C=(d-c) / 24$.
Q.E.D.

References

1. C. de Boor, Quadratic spline interpolation and the sharpness of Lebesgue's inequality. J. Approx. Theory 17 (1976), 348-358.
2. J. W. Danill. Constrained approximation and hermite interpolation with smooth quadratic splines: Some negative results. J. Approx. Theory 17 (1976). 135-149.
3. S. Demko, Interpolation by quadratic splines, J. Approx. Theory 23 (1978), 392400.
4. F. Dubeal and J. Savoie. "Interpolation de fonctions périodiques par des fonctions splines quadratiques périodiques," CRMA report 1091, Université de Montreal, 1982.
5. W. J. Kammerer, G. W. Reddien. and R. S. Varga. Quadratic interpolatory splines. Numer. Math. 22 (1974). 241-259.
6. F. Krinzesza. "Zur periodischen Spline-Interpolation," Dissertation, Bochum, 1969.
7. M. J. Marsden. Quadratic spline interpolation. Bull. Amer. Math. Soc. 80 (1974). 903-906.
8. G. Meinardus and G. D. Taylor. Periodie spline interpolant of minimal nerm, J. Approx. Theory 23 (1978), 137-141.
9. E. Nelman, Quadratic splines and histospline projection, J. Approx. Theory 29 (1980). 297-304.
10. A. Sharma and J. Tzimbalario. Quadratic splines. J. Approx. Theory 19 (1977). 186-193.
11. J. Stofr and R. Bulirsch, "Introduction to Numerical Analysis." Springer-Verlag. New York/Berlin. 1980.

[^0]: \because This work has been supported in part by a Quebec Ministry of tducation FCAC Grant at the Centre de Recherche de Mathematiques Appliquees, Universite de Montreal. Montreal, Quebee. Canada.
 ${ }^{+}$Chercheur invité, Centre de Recherche de Mathématiques Appliquees. Universite de Montreal, C.P. 6128. Suce. A. Quebec H3C 3J7, Canada.

[^1]: ${ }^{141} ; e^{(t)} \|_{x}^{*}$ are estimations of $\left\|e^{(t)}\right\|$, and are computed according to $\left\|e^{(t)}\right\|^{*}$. $=$ $\max \left\{e^{(i)}\left(y_{i j}\right) \| r_{i j}=x_{i}+j\left(h_{i} / 10\right), j=0 \ldots . . .9\right.$ and $i \in Z_{y}+$.

